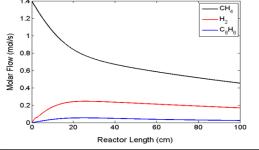

DEPARTMENT SPOTLIGHT - ENERGY SYSTEMS RESEARCH AND TEACHING OVERVIEW

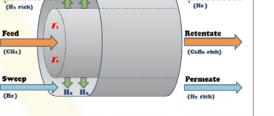
Fernando V. Lima Department of Chemical and Biomedical Engineering West Virginia University

April <mark>27, 2</mark>018


WVU Academy of Chemical Engineers

Presentation Outline

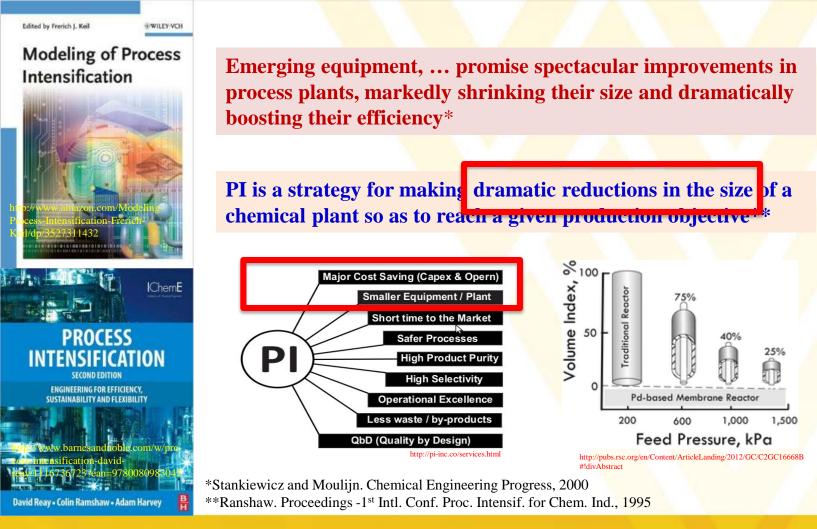
 Research Overview
Process Design and Intensification
Biomimetic Control
Sustainability
Power Plant Cycling


> Teaching Overview

Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching

Conclusions

Title


Sweep

1/17

Process Intensification (PI)

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

2/17

Modular Natural/Shale Gas System

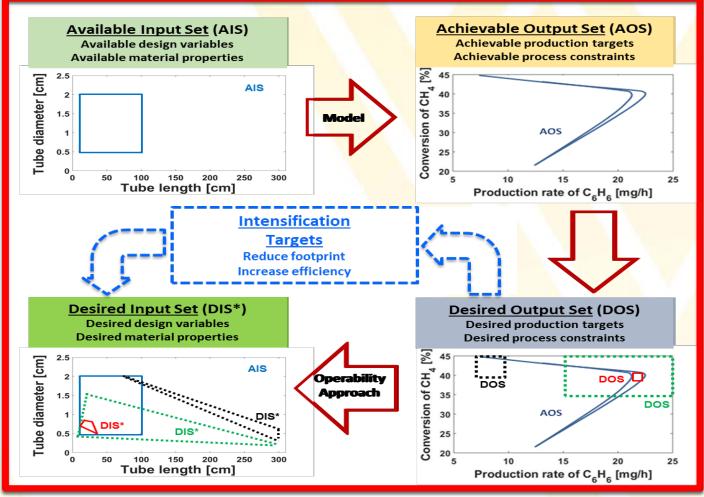
Research Concept

Direct Methane Aromatization Conversion in a Modular System

Conclusions Natural gas CH₄-rich gas or Syngas **Representative reaction: H**₂ Membrane 2 Membrane Combustor $6CH_4 \rightarrow C_6H_6 + 9H_2$ Combustor Catalyst & **Reactor Endothermic reaction Equilibrium controlled** H, **Heat Exchanger Separator Catalytic Process Intensification** Value-added liquid fuel for a Modular System and chemicals 3/17

WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES)

Title Outline Design and


Intensification Biomimetic Control

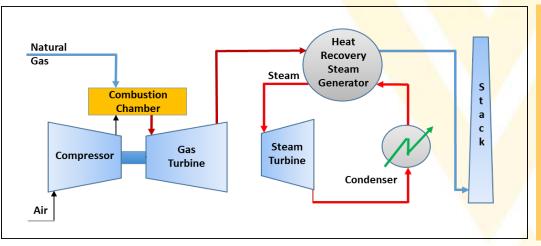
Sustainability

Power Plant

Cycling Teaching

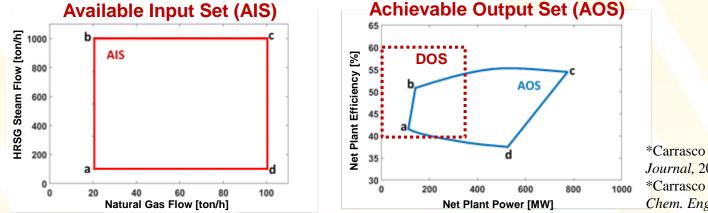
Optimization-based Operability Approach for Process Design and Intensification*

*Carrasco and Lima. AIChE Journal, 2017


WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES)

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

4/17


Natural Gas Combined Cycle (High-D Application)

Simplified Schematic of NGCC Power Plant*

- Input variables: natural gas and steam flows
- Outputs: net plant power and efficiency
- Minimize size (power generation) of NGCC plant for intensification and modularity
- Maintain combined cycle efficiency

*Carrasco and Lima. *AIChE* Journal, 2018 *Carrasco and Lima. *Comput. Chem. Eng.*, 2017

6/17

NGCC High-D System (8x8)

plants

Selected intensified 5 inputs	Inputs points	
Natural gas feed [ton/h]	0.013	
HRSG steam feed [ton/h]	0.157	
Compressor outlet pressure [atm]	5.8	
Air feed temperature [K]	329	
Steam cycle pressure [atm]	140	

Natural	Heat
Gas	Recovery
Combustion	Steam
Chamber	Generator
Gas	Steam
Turbine	Turbine
Air	Condenser

Selected intensified 5 outputs	Output points	
Net plant power [MW]	0.11	
Net plant efficiency [%]	56.5	
Capital cost* [\$ millions]	0.5	
Gas turbine power [MW]	0.09	
Air compressor power [MW]	0.06	

NGCC	P4 (63 cores)	Reduction after			
Subsystems	Time [hr:min:sec]	parallelization			
		[times]			
4x4	00:00:07	5.4			
8x8	00:14:24	70.6			
Capital Cost* [MM\$] = 2.821 (NPP) ^{0.7991} NPP: Net plant power [MW] U.S. EIA, 2013. Updated capital cost estimates for utility scale electricity generating					

ESMAP Technical paper 122/09. Study of equipment prices in the power sector

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

7/17

¥

Biomimetic Control

- First ant (or agent) follows an assumed feasible trajectory
 - Subsequent ants follow the path of their leader with some modification
 - Cooperative work in large number of ants results in optimized path

Optimal Trajectory Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

8/17

Bio-inspired Optimal Control Strategy (BIO-CS):

Home

- Idea is used as inspiration for biomimetic optimal controller design
- Application to advanced energy systems of different nature

WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES)

Food

B

Initial

Trajectory

Biomimetic Control Applications

HYPER system (NETL)

Hot

Air

Load

Syngas

Cathode

Electrolyte

Anode

20

Bleed Air

Air

Cold Air

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

Open and Closed-loop Responses

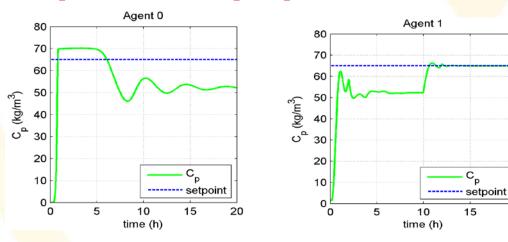
us: Flow rate of the recycled solvent stream into the absorber

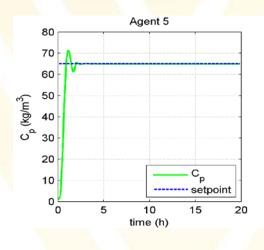
y1: Percentage of CO2 present in the outgoing stream from the absorber;

y2: Temperature of the recycled solvent stream going into the absorber;

u2: Flow rate of the refrigerant in the heat exchanger;

IGCC-AGR


nput Variables


Output Variables

IGCC AREA 1000 CO2 ABSORBER

CO₂ Absorbe

Heat Exchanger

Fermentation process*

EtOH membrane

C_{S.0}, D_n

D, T_{wout}

D.,

feed flow

olina wet

cooling wate

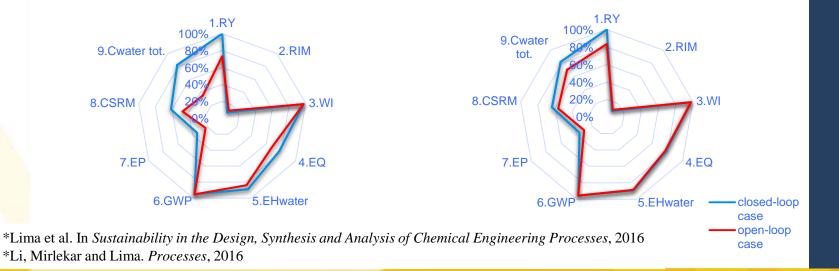
Load

Syngas

9/17

*Mirlekar, Li and Lima. Ind. Eng. Chem. Res., 2017

WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES)


Ce, C_X, Cp, Tr outlet flow

fresh wate

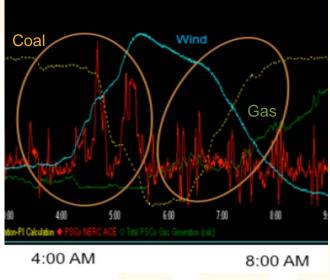
ethanol

Sustainability Assessment

- Method: integrate process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operation
- GREENSCOPE (U.S. EPA software) indicators show *improvement* of *sustainability performance* after controller implementation for fermentation process*
- Life Cycle Inventory (LCI) analysis can be incorporated into sustainable process control framework using reduced models of chemical processes

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

10/17

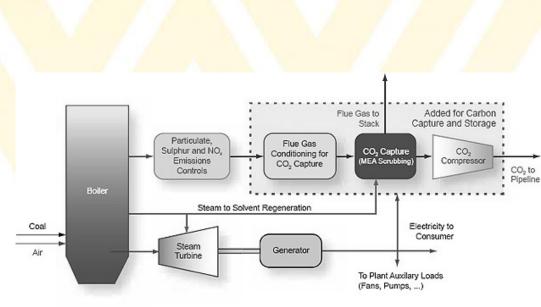

¥

Power Plant Cycling

Approach: model the impact of power plant cycling and develop model-based optimization and control methods for improving load-following behavior

Consequences of power plant cycling

- Cost and maintenance of cycling plants thermal stresses from cycling and cold/warm start-ups
- Decreased efficiency from base-loaded design operation
- Increased emissions



Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

12/17

Control for Power Plant Cycling

- Advanced control strategies (model predictive control) have been implemented on the carbon capture subsystem of the SCPC power plant*
- Plant-wide control for the SCPC plant is currently being addressed based on the optimal profiles from the cycling impact optimization

*He, Wang, Bhattacharyya, Lima and Turton. Chem. Eng. Res. Des., 2018

14/17

Teaching Overview

Objective: Contribute to Applied Mathematics (Modeling, Simulation, Design, Control) and Software Components in Department Curriculum

Numerical Methods for Chemical Engineering (ChE 230)

- ✓ further incorporate practical aspects into traditional methods
- ✓ interactive lectures with board and computer exercises
- ✓ apply theoretical training to chemical engineering examples

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

15/17

Teaching Overview

Chemical Process Design (ChE 455/456)

- ✓ employ ChE learned concepts in design of chemical and energy processes
- ✓ yearlong design project (industrial partners, e.g., MATRIC, input)
- ✓ emphasize presentation and communication skills
- Advanced Process Control (ChE 693A)
 - ✓ interactive lectures with board and programming exercises
 - ✓ apply theoretical training to projects of students' interest
 - ✓ emphasize project proposal writing, presentation and communication skills

Title Outline Design and Intensification Biomimetic Control Sustainability Power Plant Cycling Teaching Conclusions

Acknowledgments

National Science Foundation CAREER Award

American Chemical Society's Petroleum Research Fund

Department of Energy/National Energy Technology Lab

Other Support

VENERGY INSTITUTE

