Batch Production of Amino Acids

Introduction

This design involves the batch production of amino acids. The four amino acids being produced are L-aspartic acid, L-phenylalanine, L-lysine HCl, and L-leucine. These amino acids are primarily used as dietary supplements. However, L-aspartic acid and L-phenylalanine are the two main ingredients in the artificial sweetener aspartame.

Capstone Chemical Corporation requested the most profitable method(s) for producing the following amounts of the amino acids:

- 1. 1% of the world market of L-lysine HCl
- 2. 2.5% of the world market of L-leucine
- 3. 2.5% of the world market of L-aspartic acid
- 4. 2.5% of the world market of L-phenylalanine

The amino acid facility was designed to produce L-lysine and L-leucine (in the amounts shown above) in alternating campaigns throughout the year. However, the facility was also to have the capability to produce L-aspartic acid and L-phenylalanine, if the market fluctuates or if a potential buyer requests an immediate production of these two amino acids. The final design includes raw material needs, equipment schematics, equipment bare module costs, utilities needed for the process, waste treatment cost, a 5-year Monte Carlo Simulation using a 5-year MACRS Depreciation Method detailing payback periods, and net present value information for the proposed amino acid batch facility. In addition, a 3-dimensional drawing detailing the reactor design and a plot plan illustrating the plant layouts have been generated.

Results

Amino Acid Process Descriptions

Figure 1 is the process flow diagram for the amino acid facility corresponding to the stream tables given in Tables 1, 2, 3, 4. This figure and these stream tables represent only 1 of 19 reactors needed for the amino acid facility. The remaining reactors follow the same schematics with few exceptions, as discussed below.

Table 1: Stream Tables for Leucine

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	1 30 1 0 50 0.05	2 30 1 0 50 0.05	3 30 1 0 175,000 174.95	4 30 1 0 175,000 174.95
Nutrient Media (kg/batch) Biomass (kg/batch)	45 5	45 5	175,000 0	175,000 0
Eluting Water (kg/batch) L-leucine (kg/batch)	0 0	0 0	0 0	0 0
Stream Temp (°C) Pressure (bar)	13 30 1	14 30 1	15 30 1	16 30 1
Vapor mole fraction Flowrate (kg/batch)	0 175,000	0 17,500	0 157,500	0 157,500
Flowrate (m³/batch) Component Flowrates Nutrient Media (kg/batch)	175 154,000	- 0	175 154,000	175 154,000
Biomass (kg/batch) Eluting Water (kg/batch) L-leucine (kg/batch)	17,500 0 3,500	17,500 0 0	0 0 3,500	0 0 3,500
		-		
Stream	17 70	18 30	19 70	20 70
Temp (°C) Pressure (bar)	1	1	, 0	1
Vapor mole fraction	0	0	0	0
Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	97,800 175	154,000 175	101,300 175	185,300 175
Nutrient Media (kg/batch)	0	154,000	0	0
Biomass (kg/batch) Eluting Water (kg/batch)	0 97,800	0 0	0 97,800	0 178,400
L-leucine (kg/batch)	97,800 0	0	3,500	6,900

Stream	21	22	23	24
Temp (°C)	100	25	100	100
Pressure (bar)	1	1	1	1
Vapor mole fraction	1	0	0	0
Flowrate (kg/batch)	96,700	96,700	170,200	170,200
Flowrate (m ³ /batch)				
Component Flowrates				
Nutrient Media (kg/batch)	0	0	0	0
Biomass (kg/batch)	0	0	0	0
Eluting Water (kg/batch)	96,700	96,700	163,400	163,400
L-leucine (kg/batch)	0	0	6,800	6,800
Stream	25	26	27	28
• • • • • • • • • • • • • • • • • • • •	25 100	26 100	27 100	28 100
Stream Temp (°C) Pressure (bar)				
Temp (°C)				
Temp (°C) Pressure (bar)				
Temp (°C) Pressure (bar) Vapor mole fraction	100 1 0	100 1 0	100 1 0	100 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch)	100 1 0	100 1 0	100 1 0	100 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch)	100 1 0	100 1 0	100 1 0	100 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	100 1 0	100 1 0	100 1 0 4,500	100 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch)	100 1 0	100 1 0	100 1 0 4,500	100 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch)	100 1 0 170,200 0 0	100 1 0 88,500 0 0	100 1 0 4,500 0 0	100 1 0 84,000 0 0

Table 2: Stream Tables for Lysine

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	1 30 1 0 50 0.05	2 30 1 0 50 0.05	3 30 1 0 175,000 174.95	4 30 1 0 175,000 174.95
Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- lysine (kg/batch)	45 5 0 0	45 5 0 0	175,000 0 0 0	175,000 0 0 0
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- lysine (kg/batch)	13 30 1 0 175,000 175 142,555 17,500 0 14,945	14 30 1 0 17,500 - 0 17,500 0 0	15 30 1 0 157,500 175 142,555 0 0 14,945	16 30 1 0 157,500 175 142,555 0 0 14,945
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	17 70 1 0 175,000 175	18 30 1 0 142,555 175	19 70 1 0 29,600 175	20 70 1 0 58,600
Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- lysine (kg/batch)	0 0 175,000 0	142,555 0 0 0	0 0 12,200 17,400	0 0 27,400 31,200

Stream	21	22	23	24
Temp (°C)	100	25	100	100
Pressure (bar)	1	1	1	1
Vapor mole fraction	1	0	0	0
Flowrate (kg/batch)	7,500	7,500	68,800	68,800
Flowrate (m ³ /batch)				
Component Flowrates				
Nutrient Media (kg/batch)	0	0	0	0
Biomass (kg/batch)	0	0	0	0
Eluting Water (kg/batch)	7,500	7,500	36,000	36,000
L- lysine (kg/batch)	0	0	32,800	32,800
Stream	25	26	27	28
	25 100	26 100	27 100	28 80
Stream Temp (°C) Pressure (bar)				
Temp (°C)	100			
Temp (°C) Pressure (bar)	100 2			
Temp (°C) Pressure (bar) Vapor mole fraction	100 2 0	100 1 0	100 1 0	80 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch)	100 2 0	100 1 0	100 1 0	80 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m³/batch)	100 2 0	100 1 0	100 1 0	80 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	100 2 0	100 1 0	100 1 0	80 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch)	100 2 0	100 1 0	100 1 0	80 1 0
Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch)	100 2 0 68,800 0 0	100 1 0 50,800 0 0	100 1 0 19,300 0 0	80 1 0 29,000 0 0

Table 3: Stream Tables for Aspartic Acid

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	1 30 1 0 50 0.05	2 30 1 0 50 0.05	3 30 1 0 175,000 174.95	4 30 1 0 175,000 174.95
Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- aspartic acid (kg/batch)	45 5 0 0	45 5 0 0	175,000 0 0 0	175,000 0 0 0
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- aspartic acid (kg/batch)	13 30 1 0 175,000 175 138,880 17,500 0 18,620	14 30 1 0 17,500 - 0 17,500 0 0	15 30 1 0 157,500 175 138,880 0 0 18,620	16 30 1 0 157,500 175 138,880 0 0 18,620
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- aspartic acid (kg/batch)	17 70 1 0 175,000 175 0 0 175,000 0	18 30 1 0 138,880 175 138,880 0 0	19 70 1 0 193,620 175 0 0 175,000 18,620	20 70 1 0 310,460 0 273,220 37,240

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	21 100 1 1 70,600	22 25 1 0 70,600	23 100 1 0 246,040	24 100 1 0 246,040
Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- aspartic acid (kg/batch)	0 0 70,600 0	0 0 70,600 0	0 0 208,800 37,240	0 0 208,800 37,240
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch)	25 100 2 0 246,040	26 100 1 0 141,640	27 100 1 0 24,800	28 100 1 0 116,840
Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L- aspartic acid (kg/batch) L-aspartic acid (solid) (kg/batch)	0 0 208,800 37,240	0 0 104,400 18,620 18,620	0 0 6,180 0 18,620	0 0 98,220 18,620 0

Table 4: Stream Tables for Phenylalanine

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	1 30 1 0 50 0.05	2 30 1 0 50 0.05	3 30 1 0 175,000 174.95	4 30 1 0 175,000 174.95
Nutrient Media (kg/batch)	45	45	175,000	175,000
Biomass (kg/batch)	5	5	0 0	0 0
Eluting Water (kg/batch) L-phenylalanine (kg/batch)	0 0	0 0	0	0
p - , (3 ,				
Stream	13	14	15	16
Temp (°C)	30	30	30	30
Pressure (bar)	1	1	1	1
Vapor mole fraction	0	0	0	0
Flowrate (kg/batch) Flowrate (m ³ /batch)	175,000 175	17,500	157,500 175	157,500 175
Component Flowrates	175	_	175	175
Nutrient Media (kg/batch)	153,702	0	153,702	153,702
Biomass (kg/batch)	17,500	17,500	0	0
Eluting Water (kg/batch)	0	0	0	0
L-phenylalanine (kg/batch)	3,798	0	3,798	3,798
Ctra and	47	40	40	20
Stream	17 70	18 30	19 70	20 70
Temp (°C) Pressure (bar)	1	1	70 1	1
Vapor mole fraction	0	0	0	0
Flowrate (kg/batch)	69,000	153,702	72,800	110,600
Flowrate (m ³ /batch)	175	175	175	
Component Flowrates	0	152 702	0	0
Nutrient Media (kg/batch) Biomass (kg/batch)	0	153,702 0	0 0	0
Eluting Water (kg/batch)	69,000	0	69,000	102,900
L-phenylalanine (kg/batch)	0	0	3,800	7,700

Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch) Component Flowrates	21 100 1 1 67,700	22 25 1 0 67,700	23 100 1 0 86,600	24 100 1 0 86,600
Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L-phenylalanine (kg/batch)	0 0 67,700 0	0 0 67,700 0	0 0 78,600 8,000	0 0 78,600 8,000
Stream Temp (°C) Pressure (bar) Vapor mole fraction Flowrate (kg/batch) Flowrate (m ³ /batch)	25 100 2 0 86,600	26 100 1 0 47,100	27 100 1 0 9,300	28 100 1 0 37,800
Component Flowrates Nutrient Media (kg/batch) Biomass (kg/batch) Eluting Water (kg/batch) L-phenylalanine (kg/batch) L-phenylalanine (solid) (kg/batch)	0 0 78,600 8,000 0	0 0 39,300 4,000 3,800	0 0 5,400 100 3,800	0 0 33,900 3,900 0

Reactors, R-501-519, operate in parallel. The kinetic data for the reactions can be found in References 1-4. The reactor effluent is then pumped to a series of rotary drum precoat filters. Here, the bacteria are filtered out of the slurry. The bacteria-free slurry is then sent to storage vessels, V-501-519. From the storage vessels, the slurry is pumped to ion exchange towers, T-501-516, where the amino acid is removed using an ion exchange resin. One resin, Dowex Marathon C, was chosen for use in the process. It is important to note that L-aspartic acid bypasses this section of the process, since it is crystallized in solution through precipitation. The ion exchange slurry is then sent to crystallizers CR-501-520. In this section, the amino acid is crystallized, using a series of Draft Tube Baffle (DTB) Crystallizers, precipitated out of solution, and filtered out of the slurry using rotary drum filters F-506-510. The amino acid product is then sent to the product storage area of the facility.

This amino acid facility is the most profitable design for producing at least 1% of the world market of L-lysine and 2.5% of the world market of L-leucine with the flexibility to produce approximately 2.5% of the world market of L-aspartic acid and L-phenylalanine upon demand. Table 5 shows the batch and process information for this facility.

 Table 5:
 Batch and Process Information for the Amino Acid Facility

	L-leucine	L-lysine	L-aspartic acid	L-phenylalanine
World Demand (kg/y)	2.40x10 ⁸	6.00x10 ⁸	1.80x10 ⁷	3.06x10 ⁸
Amount Produced in Process (kg/y)	6.00x10 ⁶	6.00x10 ⁶	4.36x10 ⁶	7.11x10 ⁶
*Batch Time (h/batch)	81	43	34	79
Concentration of Product (kg/m ³)	20	85.4	106.4	21.7
Total Volume for Year (m³/y)	3.00x10 ⁵	7.03x10 ⁴	4.10x10 ⁴	3.28x10 ⁵
Required Number of Batches (batches/y)	104	182	234	104

*Includes cleaning time of 1 hour, tank filling/draining time of 3 hours, and graveyard shift times (time varies for each product illustrated in Figure 2).

Design Economics & Reactor Scheduling

The reactor schedule for the amino acid reactors is shown in Figure 2. This figure represents a recurring 14-day cycle, showing the schedule needed for all processes using all 19 reactors to produce either L-leucine and L-lysine or L-aspartic acid and L-phenylalanine. Figure 3 illustrates the 14-day separation schedule for the amino acid facility. The separation schedule was based upon the 14-day reactor schedule shown in Figure 2. There are four batches per cycle in the L-leucine and L-phenylalanine processes, seven for L-lysine, and nine for L-aspartic acid.

For the case when L-leucine and L-lysine are being produced, one of the reactors (R-517) in the L-leucine process does not operate for the entire year and has the schedule shown in Table 6. R-517 produces the last of the L-leucine and L-lysine in approximately 5700 hours and is idle for the remainder of the year. For the case when L-phenylalanine and L-aspartic acid are being produced, it is important to note that R-517 will produce L-phenylalanine all year as shown in Figure 2.

Product		Reactor Numbers
		501-506
*L-leucine		507-512
		513-517
*L-lysine		518
		519
L-aspartic acid		501
		502-507
L-phenylalanine		508-513
		514-519
Timeline (shifts)	D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N G D N	
Days	1 2 3 4 5 6 7 8 9 10 11 12 13 14	

*The amino acid facility was designed to produce these 2 processes using a total of 19 reactors.

Note: D=daytime shift N=Nghtime shift G=graveyard shift

Figure 2: Reactor Scheduling for the Amino Acid Process

Schedule A		[Day	1			Day	/2			Da	ay	3		[Day	/ 4		D	ay	5			Day	6			Da	y 7	
Schedule A		D	N		G	D		N	G	D)	Ν		G	D	1	N	G	D		Ν	G	D	١	N	G	D		Ν	G
Ion Exchange 1	R	C	F	Е	R	C	F	Е	R	С		F	Е	R	С	F	Е	R	С		FΕ	R	C	F	Е	R	С		F	E
Ion Exchange 2	Е	R C		F	Е	R C	;	F	E	R	C		F	Е	R C		F	E	R	C	F	E	R C		F	E	R	C		F
Crystallizer 1		ОС		US	SS	0 0	;	U	<u>ss</u>	0	С		US	s	ОС		U	SS_	0	С	U	ss	ОС		US	SS	0	С	ι	JSS
Crystallizer 2	U	ISS	0	С	U	SS	0	С	l	JSS	5	0	С	ι	JSS	0	С		USS	(ЭC		USS	0	С		USS		0	С
Crystal Filter		ос	0	С		00	0	С		0	С	0	С		0 C	0	С		0	С	SС		ос	0	С		0	С	0	С
Schedule B	N	1	E	G	Ν	1	Е	G	ſ	M	Ε		G	Ν	Л	E	G		М	Ε	G	;	M	Ξ	G	ſ	N	Е		G
Schedule D		Day	/ 1			Da	y 2			D	ay	3			Day	y 4			Day	5			Day	/ 6			D	Day	7	
Cabadula A		[Day	8			Day	/ 9		Day 10			Day 11				Da	ay	12		Day 13		Day 14							
Schedule A	ĺ	D	N	I	G	D		N	G	D)	N		G	D	1	V	G	D		Ν	G	D	N	١	G	D		Ν	G
Ion Exchange 1	R	C	F	Е	R	C	F	Е	R	С		F	E	R	С	F	Е	R	С		FE	R	C	F	Е	R	С		F	E
Ion Exchange 2	Е	R C		F	Е	R C	;	F	Ε	R	C		F	Ε	R C		F	Ε	R	C	F	E	R C		F	E	R	C		F
Crystallizer 1		0 C		US	SS	0 0	;	U	SS	0	С		US	SS	0 C		U	5 <u>S</u>	0	С	U	SS	0 C		US	SS	0	С	ι	JSS
Crystallizer 2	U	ISS	0	С	U	SS	0	С	ι	JSS	6	0	С	ι	JSS	0	С		USS	(SС		USS	0	С		USS		0	C
Crystal Filter		oc	0	С		00	0	С		0	С	0	С		ОС	0	С		0	С	SС		0 C	0	С		0	С	0	С
Schedule B	N	1	E	G	N	1	Е	G	ſ	M	Ε		G	Ν	Л	E	G		М	Ε	G	;	M	Ξ	G	ſ	Ν	Ε		G
		Day	/ 8			Da	y 9			Da	ay ´	10			Day	11			Day	12			Day	13	6		D	ay 1	4	

Schedule A	-	8 AM to 4 PM 4 PM to Midnight Midnight to 8 AM	
Schedule B	Morning Shift Evening Shift Graveyard B	4 AM to Noon Noon to 8 PM 8 PM to 4 AM	

F	Feeding Ion Exchange Column
E	Eluting Ion Exchange Column
R	Regenerating Ion Exchange Column
С	Cleaning Equipment
USS	Operating at Unsteady State
0	Operating at Steady State

Figure 3: Separation Scheduling for the Amino Acid Process

Processing Time for Last Reactor in Each Process								
L-leucine and L-lysine	407	3 hours (L-leud	cine)	1611 hours	(L-lysine)			
Timeline (hours)	1000	2000	3000	4000	5000	6000	7000	8000

Table 6: Processing Time for Reactor-517 in L-leucine/L-lysine Process

The break-even prices for the L-leucine and L-lysine processes are \$13.30/kg and \$2.70/kg, respectively. Figure 4 shows the yearly operating cost breakdown for these processes. Raw materials represent the largest cost followed by waste treatment and utility costs. A breakdown of the raw material cost for the L-leucine and L-lysine processes is shown in Figure 5. Figure 6 illustrates the equipment cost breakdown, and Figure 7 details the utility cost breakdown for these processes.

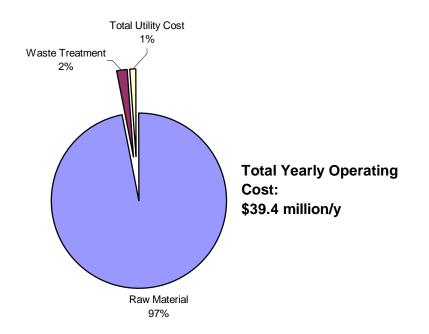


Figure 4: Yearly Operating Cost Breakdown for L-leucine and L-lysine

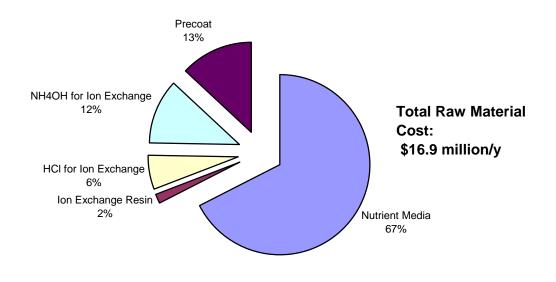


Figure 5: Raw Material Cost Breakdown for L-leucine and L-lysine

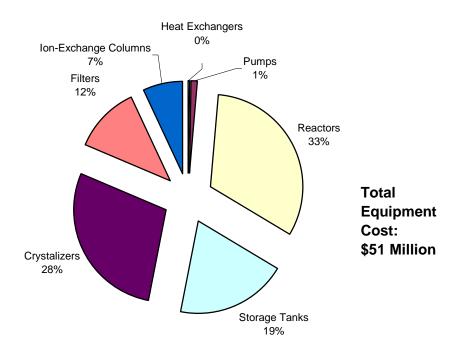
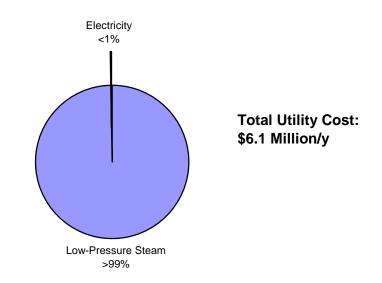



Figure 6: Total Equipment Cost Breakdown for L-leucine and L-lysine

Figure 7: Total Utility Cost Breakdown for L-leucine and L-lysine

In order to run the L-phenylalanine and L-aspartic acid processes, additional equipment, not shown in Figure 1, must be purchased and is listed in Table 7.

Table 7:	Additional	Equipment	Needed for	L-phenylalanin	e and L-aspartic acid
----------	------------	-----------	-------------------	----------------	-----------------------

L-aspartic Acid Process		
Equipment Type	Number Required	Specifications
Heat Exchangers	2	412 m ²
Centrifugal Pumps	8	2 kW
Crystal Filter	4	1.4 m ²
L-phenylalanine Process		
Equipment Type	Number Required	Specifications
Heat Exchangers	2	345 m ²

The break-even prices for the L-phenylalanine and L-aspartic acid processes are \$15.00/kg and \$12.00/kg, respectively. Figure 8 represents the yearly operating cost breakdown for these processes. A breakdown of raw material cost for the processes is

shown in Figure 9. Figure 10 is the equipment cost breakdown, and Figure 11 details the utility cost breakdown for these processes.

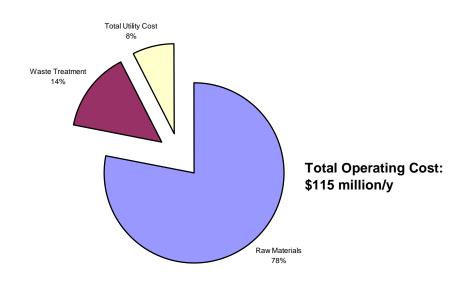


Figure 8: Yearly Operating Cost Breakdown for L-aspartic acid & L-phenylalanine

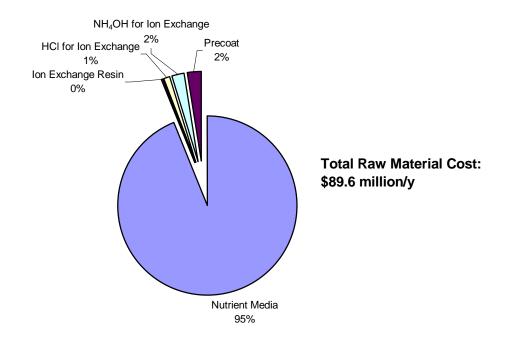


Figure 9: Raw Material Cost Breakdown for L-aspartic acid & L-phenylalanine

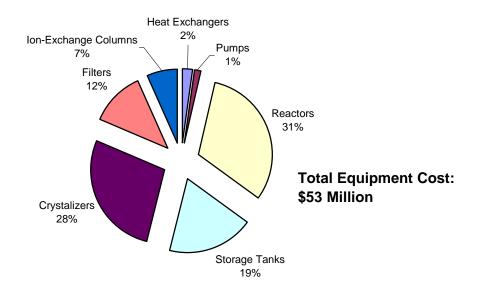


Figure 10: Total Equipment Cost Breakdown for L-aspartic acid & L-phenylalanine

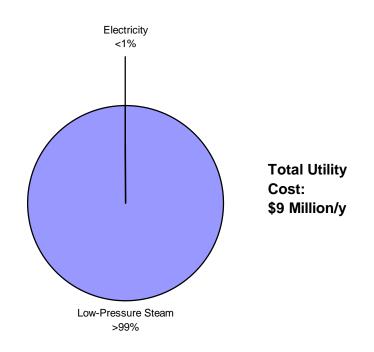


Figure 11: Total Utility Cost Breakdown for L-aspartic acid & L-phenylalanine

Conclusions & Recommendations

In conclusion, Technocats, Inc., has completed the final design for the requested amino acid facility as shown in Figure 1. Technocats, Inc., has determined equipment needed to produce L-lysine and L-leucine, as well as, additional equipment needed to produce L-phenylalanine and L-aspartic acid if the market fluctuated to do so or if a potential buyer offered an outstanding premium to produce the two. This provides Capstone Chemical Corporation with the flexibility to produce any of the four amino acids discussed above.

Another item addressed during the design process was the issue of scheduling. Scheduling was used to determine how each amino acid would "travel" through the process. A full 14-day reactor schedule was formulated to fit the 8-hour work shifts. A full 14-day schedule for the separations section was also developed and designed to fit the 8-hour work shifts. These schedules are how the batch amino acid facility will operate. The schedules are illustrated in Figures 2 and 3.

Technocats, Inc., strongly recommends the construction of the proposed batch facility. The amino acid facility will produce L-lysine, L-leucine, L-phenylalanine, and L-aspartic acid utilizing the same equipment. This provides Capstone Chemical Corporation with the flexibility to produce multiple products and shift from product to product, as the market fluctuates. The break-even and market prices for all four amino acids are summarized in Table 8.

Amino Acid	Break-even Price (\$/kg)	Market Price (\$/kg)***
L-lysine HCl	2.70	4.75
L-leucine	13.30	140.00

Table 8: Amino Acid Break-Even Prices

L-aspartic acid	12.00	20.00		
L-phenylalanine	15.00	84.00		

***all prices are quoted from Chemical Market Reporter (March 2003)

A detailed economic analysis including bare module costs and a 5-year Monte Carlo simulation is given in the Appendicies. The significance of this simulation is that the probability of losing money is virtually zero for the amino acids process. Detailed calculations of all equipment, cleaning times, and impeller power can also be found in the Appendicies. Finally, a reactor HAZOP, a plant plot plan, and PDMS drawings of reactors can also be found in the Appendix.

References

- 1. Takamatsh, T., K. Yamashita, and A. Sumi, "Kinetics of Production of L-aspartic Acid by Aspartase of Immobilized *Eschericia Coli* Cells," *Japanese Journal of Fermentation Technology*, Vol 58, No. 2, pp.129-33, 1980.
- 2. Tsuchida, Takayasu and Koji Kubota, et. al. "Production of L-Phenylalanine by a Mutant of *Brevibacterium lactofermentum* 2256," *Agricultural Biological Chemistry*, Vol. 51, No. 8, pp. 2095-2101, 1987.
- 3. (Rule of Thumb) <u>http://www.glue.umd.edu/~nsw/ench485/lab9c.htm.</u>
- 4. Tada, Kiyoshi, Michimasa Kishimoto, Takeshi Omasa, Yoshio Katakura, and Ken-Ichi Suga, "Constrained Optimization of L-lysine Production Based on Metabolic Flux Using a Mathematical Programming Method," *Journal of Bioscience and Bioengineering*, Vol. 91, No. 4, pp. 344-351, 2001.